Instruction manual and data sheet SPCA-5Pi-05-3000-800-x

Broadband photoconductive antenna with 5π logarithmic spiral structure for laser wavelengths $\lambda \sim 500\text{ nm} \ldots 850\text{ nm}$

PCA – Photoconductive Antenna

Table of contents:

1. Antenna parameters ... 2
2. Antenna design ... 3
3. Order information ... 4
1. Antenna parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>minimum ratings</th>
<th>standard</th>
<th>maximum ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark resistance</td>
<td>100 MΩ</td>
<td>150 MΩ</td>
<td>180 MΩ</td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td>15 V</td>
<td>20 V</td>
</tr>
<tr>
<td>Optical mean power</td>
<td></td>
<td>20 mW</td>
<td>30 mW</td>
</tr>
</tbody>
</table>

Dark current voltage characteristic
2. **Antenna design**

Photo SPCA 5Pi-05-3000 (survey)

Photo SPCA 5Pi-05-3000 (detail)

Dielectric cover
3. Order information

SPCA-5Pi-05-3000-800-x logarithmic spiral photoconductive antenna

- spiral angle: 4π
- gap distance: $g = 5\, \mu m$
- diameter of the spiral antenna: $l = 3000\, \mu m$
- laser wavelength: $\lambda = 800\, \text{nm}$

x denotes the type of mounting as follows:

- $x = 0$: unmounted chip 4 mm x 4 mm with 4 bond contact pads
- $x = h$: mounted on an Al disc with 25.4 mm Θ and hyperhemispherical silicon substrate lens, 1m coaxial cable with BNC or SMA connector
- $x = a$: mounted on an Al disc with 25.4 mm Θ and aspheric focusing silicon substrate lens, 1m coaxial cable with BNC or SMA connector
- $x = c$: mounted on an Al disc with 25.4 mm Θ and aspheric collimating silicon substrate lens CL-12 for 12 mm THz beam diameter, 1m coaxial cable with BNC or SMA connector
- $x = h-f$: fiber coupled antenna with hyperhemispherical silicon substrate lens
- $x = l$: with aspheric focusing optical lens for free space laser excitation
- $x = p$: with preamplifier for detector antenna

For information about THz beam guiding possibilities please click here