

Instruction manual and data sheet bPCA-100-05-10-1550-x

Photoconductive THz antenna for laser excitation wavelengths $\lambda \sim$ 1550 nm PCA – **P**hoto **C**onductive **A**ntenna

Table of contents:

1.	Spectral performance	2
2.	Antenna parameters	3
	'	
3.	Antenna design	4
4.	Order information	5

1. Spectral performance

2. Antenna parameters

Instruction manual

Parameter	minimum ratings	standard	maximum ratings
Dark resistance	100 kΩ	300 kΩ	500 kΩ
Voltage		10 V	10 V
Optical mean power @ 50 – 100 MHz repetition rate		10 mW	12 mW
Pulse fluence		250 μJ/cm ²	300 μJ/cm ²

Attention: The F-number of the optical lens focusing the laser beam onto the antenna gap must be larger then a certain value to avoid too high pulse fluency. This means, that the minimum diameter of the focused beam waist must be about 120 % of the gap distance g. For a Gaussian beam the minimum focus length f_{min} of the optical lens can be estimated as

$$f_{\min} = \frac{0.3 \cdot \pi \cdot g \cdot D}{\lambda}$$

with

g - gap distance of the antenna

 λ - laser wavelength

D – diameter of the laser beam hitting the focusing lens.

For λ = 1,5 μ m and g = 5 μ m the minimum possible F-number of the lens is f_{min}/D = π .

3. Antenna design

antenna dimensions in mm, gap dimensions in µm

bPCA 100-05-10-1550 (detail)

4. Order information

bPCA-100-05-10-1550-x Photoconductive antenna

length $I = 100 \mu m$

gap $g = 5 \mu m$ width $w = 10 \mu m$

laser wavelength λ = 1550 nm

x denotes the type of mounting as follows:

$\mathbf{x} = 0$	unmounted o	chin 4 mm x 4	1 mm with 2	bond contact pads
<u>^</u> – U	uninounted t	JI 110 T I I I I I A -	†	DOING CONTRACT DAGS

x = h mounted on an Al disc with 25.4 mm \emptyset and <u>hyperhemispherical silicon</u>

substrate lens, 1m coaxial cable with BNC or SMA connector

x = a mounted on an Al disc with 25.4 mm Ø and aspheric focusing silicon substrate

lens, 1m coaxial cable with BNC or SMA connector

x = c mounted on an Al disc with 25.4 mm \emptyset and aspheric collimating silicon

substrate lens CL-12 for 12 mm THz beam diameter, 1m coaxial cable with

BNC or SMA connector

x = h-f <u>fiber coupled antenna</u> with hyperhemispherical silicon substrate lens

x = I with <u>aspheric focusing optical lens</u> for free space laser excitation

x = p with <u>preamplifier</u> for detector antenna

For information about THz beam guiding possibilities please click here